Molecular Codes in Biological and Chemical Reaction Networks
نویسندگان
چکیده
منابع مشابه
Molecular Codes in Biological and Chemical Reaction Networks
Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio-) chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by a...
متن کاملMolecular Codes in Biological and Non-Biological Reaction Networks
Can we objectively distinguish chemical systems that are able to process meaningful information from those that are not suitable for information processing? Here, we present a formal method to assess the semantic capacity of a chemical reaction network. The semantic capacity of a network can be measured by analyzing the capability of the network to implement molecular codes. We analyzed models ...
متن کاملIdentifying Molecular Organic Codes in Reaction Networks
Studying semantics is strongly connected to studying codes that link signs to meanings. Here we suggest a formal method to identify organic codes at a molecular level. We define a molecular organic code with respect to a given reaction network as a mapping between two sets of molecular species called signs and meanings, respectively, such that (a) this mapping can be realized by a third set of ...
متن کاملNoise Propagation in Biological and Chemical Reaction Networks
We describe how noise propagates through a network by calculating the variance of the outputs. Using stochastic calculus and dynamical systems theory, we study the network topologies that accentuate or alleviate the effect of random variance in the network for both directed and undirected graphs. Given a linear tree network, the variance in the output is a convex function of the poles of the in...
متن کاملTiming in chemical reaction networks
Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising programming language for the design of artificial molecular control circuitry. Due to a formal equivalence between CRNs and a model of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2013
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0054694